我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|本期目录/Table of Contents|

基于生信分析预测人参-茯苓药对治疗结直肠癌的分子机制*(PDF)

《云南中医学院学报》[ISSN:1000-2723/CN:53-1048/R]

期数:
2019年03期
页码:
83-92
栏目:
方药研究
出版日期:
2020-04-20

文章信息/Info

Title:
Prediction of Molecular Mechanism of Ginseng-Indian Bread in the Treatment of Colorectal Cancer Based on Biosignal Analysis
文章编号:
1000-2723(2019)03-0083-10
作者:
周小英1苗大兴2△符中柱2龚超超1袁盛兰1熊 浩1
(1. 贵州中医药大学,贵州 贵阳 550002;2. 贵州中医药大学第一附属医院,贵州 贵阳 550001)
Author(s):
ZHOU Xiaoying1 MIAO Daxing2 FU Zhongzhu2 GONG Chaochao1 YUAN Shenglan1 XIONG Hao1
(1. Guizhou University of Traditional Chinese Medicine, Guiyang 550002,China; 2. The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001,China)
关键词:
人参-茯苓结直肠癌生物信息分析靶点信号通路
Keywords:
Ginseng-Indian Bread colorectal cancer bioinformatics analysis target signaling pathway
分类号:
R285.5
DOI:
10.19288/j.cnki.issn.1000-2723.2019.03.0014
文献标识码:
A
摘要:
目的通过生物信息分析获取人参-茯苓药对治疗疾病的潜在靶点基因,挖掘结直肠癌患者和健康人的基因数据芯片,预测人参、茯苓药对治疗结直肠癌的潜在机制。方法 从GEO数据库中获取GSE128449基因芯片,使用GEO2R在线分析软件设置P<0.01,log2FC>1.5,得出差异基因。从中药分子机制的生物信息学分析工具BATMAN-TCM(A Bioinformatics Analysis Tool for Molecular Mechanism of Traditional Chinese Medicine)设置预测候选目标积分>20,P<0.05,获得人参-茯苓药对的化合物和可能干预的靶基因数,两者取交集获得药对治疗结直肠癌的靶点基因。使用PPI分析数据库STRING构建靶点互作(PPI)网络模型,采用Cyotoscape作图软件构建网络,利用CytoHubba插件进行Hub(核心)基因网络分析,采用R语言的Bioconductor包进行通路富集(KEGG)分析和生物过程(GO)分析。结果 本实验从GEO2R中共获得CRC显著性高的基因890个(P<0.05),从BATMAN-TCM数据库中获得人参(Ginseng)293个化合物(其中138个化合物无结构信息),可能干预的靶基因1338个。茯苓(Indian Bread)共54个化合物(其中33个化合物无结构信息),可能干预的靶基因503个。两者交集共获得23个基因,分别为LEP、APOE、HTR3A、NPPA、TNF、PTGS2、 HMBS、CREB1、AKR1C1、NFKB1、COX5A、RXRA、CAMK2D、PPARG、 HDAC9、GABRA2、IL6、MAOB、NFIB、RAB3B、GRIN1、ADK、RRM2B。这些基因主要参与了代谢过程的积极调节,炎症反应、细胞凋亡、细胞死亡、细胞增殖的负调节等GO生物过程。主要调控TNF信号通路、PI3K/Akt信号通路、NF-κB信号通路及癌症中的转录失调途径等。结论 人参-茯苓可能通过干预TNF、NFKB1、IL6、PTSG2等调控癌症相关和炎症相关途径来防治结直肠癌。
Abstract:
Objective To obtain the potential target genes of ginseng-Indian Bread drugs for treating diseases through bioinformatics analysis, and to mine the genetic data chips of colorectal cancer patients and healthy people, and to predict the potential mechanism of ginseng-Indian Bread drugs for the treatment of colorectal cancer. Methods The GSE128449 gene chip was obtained from GEO database. The GEO2R online analysis software was used to set P<0.01, log2FC>1.5, and the differential genes were obtained. The bioinformatics analysis tool BATMAN-TCM (A Bioinformatics Analysis Tool for Molecular Mechanism of Traditional Chinese Medicine) set the candidate target score >20, P<0.05, obtained the compounds and target genes of ginseng-Indian Bread pair that may be interfered, and the two take the intersection to obtain the target genes for colorectal cancer. The target interaction(PPI) network model was constructed by using the PPI analysis database STRING, the network was constructed by using Cyotoscape mapping software, the Hub (core) gene network analysis was performed by the CytoHubba plug-in, and the path enrichment (KEGG) analysis and biological process (GO) analysis were performed by the R language Bioconductor package. Results In this experiment, 890 genes with high CRC significance(P<0.05) were obtained from GEO2R, and 293 compounds of Ginseng were obtained from BATMAN-TCM database (138 compounds had no structural information), and 1338 target genes might be interfered. Indian Bread acquired 54 compounds (33 of which have no structural information) may be involved in 503 target genes. A total of 23 genes were obtained including LEP, APOE, HTR3A, NPPA, TNF, PTGS2, HMBS, CREB1, AKR1C1, NFKB1, COX5A, RXRA, CAMK2D, PPARG, HDAC9, GABRA2, IL6, MAOB, NFIB, RAB3B, GRIN1, ADK, RRM2B. These genes were involved in the GO biological process such as active regulation of metabolic processes, regulation of inflammatory response, apoptosis, cell death, and negative regulation of cell proliferation. Also they regulate TNF signaling pathway, PI3K/Akt Signal pathways, NF-κB signaling pathways and transcriptional disorders in cancer. Conclusion Ginseng-Indian Bread may prevent and treat colorectal cancer by interfering with TNF, NFKB1, IL6, PTSG2 and other cancer-related and inflammation-related pathways.

参考文献/References

[1] ONYOH E F, HSU W F, CHANG L C, et al. The rise of colorectal cancer in Asia: epidemiology, screening, and management[J]. Curr Gastroenterol Rep,2019,21(8):36.
[2] NAVARRO M, NICOLAS A, FERRANDEZ A, et al. Colorectal cancer population screening programs worldwide in 2016: An update[J]. World J Gastroenterol, 2017, 23(20):3632-3642.
[3] XU Q, XU P, CEN Y, et al. Effects of preoperative oral administration of glucose solution combined with postoperative probiotics on inflammation and intestinal barrier function in patients after colorectal cancer surgery[J]. Oncology Letters,2019,18(1):694-698.
[4] 何文婷,张彤,杨宇飞,等.中医药治疗结直肠癌临床疗效Meta分析及证型分析[J]. 中医杂志,2018,59(22):1929-1936.
[5] 李悠然,谷云飞,陈邑岐,等.四君子汤加减联合化疗对结直肠癌患者的Meta分析[J]. 中国实验方剂学杂志,2016,22(6):204-209.
[6] 于雪妮,冯小刚,张建民,等.人参化学成分与药理作用研究新进展[J]. 人参研究,2019,31(1):47-51.
[7] 方潇,丁晓萍,昝俊峰,等. 茯苓皮化学成分及药理作用研究进展[J]. 亚太传统医药,2019,15(1):187-191.
[8] 王梓,许兴月,李琼,等. 人参皂苷Rg1热裂解产物对H_(22)荷瘤小鼠的抗肿瘤作用[J]. 中国药学杂志,2017,52(15):1319-1324.
[9] 黄斯,潘雨薇,蓝海,等.茯苓酸药理学研究进展[J].中成药,2015,37(12):2719-2721.
[10] CHEN X J, ZHANG X J, SHUI Y M, et al. Anticancer activities of Protopanaxadiol-and Protopanaxatriol-Type Ginsenosides and their metabolites[J]. Evid Based Complement Alternat Med,2016,2016:5738694.
[11] SUN K X, XIA H W. Pachymic acid inhibits growth and induces cell cycle arrest and apoptosis in gastric cancer SGC-7901 cells[J]. Oncol Lett,2018,16(2):2517-2524.
[12] LEE M S, KIM M S, YOO J K, et al. Enhanced anticancer effects of a mixture of low-dose mushrooms and Panax ginseng root extracts in human colorectal cancer cells[J]. Oncol Rep,2017,38(3):1597-1604.
[13] JIN H R, DU CH, WANG C Z, et al. Ginseng metabolite protopanaxadiol interferes with lipid metabolism and induces endoplasmic reticulum stress and p53 activation to promote cancer cell death[J]. Phytother Res,2019,33(3):610-617.
[14] 林嘉. 茯苓总三萜免疫抑制及诱导人结肠癌RKO细胞凋亡的研究[D]. 广州:南方医科大学,2016.
[15] GUO Z, LIU Z, YUE H, et al. Beta-elemene increases chemosensitivity to 5-fluorouracil through down-regulating microRNA-191 expression in colorectal carcinoma cells[J]. J Cell Biochem,2018,119(8):7032-7039.
[16] DA S J, PINTO L C, BURBANO R M, et al. Composition and cytotoxic and antioxidant activities of the oil of Piper aequale Vahl[J]. Lipids Health Dis,2016,15(1):174.
[17] YANG Z, LI C, WANG X, et al. Dauricine induces apoptosis,inhibits proliferation and invasion through inhibiting NF-kappaB signaling pathway in colon cancer cells[J]. J Cell Physiol,2010,225(1):266-275.
[18] VARGAS A J, ASHBECK E L, WERTHEIM B C, et al. Dietary polyamine intake and colorectal cancer risk in postmenopausal women[J]. Am J Clin Nutr,2015,102(2):411-419.
[19] XIE K, WANG Y, SHEN H, et al. [Effects of adenosine on hMLH1 methylation of human colorectal cancer cells][J]. Zhonghua Yi Xue Za Zhi,2014,94(16):1261-1264.
[20] DING D, YAO Y, YANG C, et al. Identification of mannose receptor and CD163 as novel biomarkers for colorectal cancer[J]. Cancer Biomark,2018,21(3):689-700.
[21] JIN H R, DU CH, WANG C Z, et al. Ginseng metabolite protopanaxadiol interferes with lipid metabolism and induces endoplasmic reticulum stress and p53 activation to promote cancer cell death[J]. Phytother Res,2019,33(3):610-617.
[22] WANG C Z, ZHANG Z, WAN J Y, et al. Protopanaxadiol,an active ginseng metabolite,significantly enhances the effects of fluorouracil on colon cancer[J]. Nutrients,2015,7(2):799-814.
[23] GUERTIN K A, LI X S, GRAUBARD B I, et al. Serum Trimethylamine N-oxide,Carnitine,Choline,and Betaine in Relation to Colorectal Cancer Risk in the Alpha Tocopherol,Beta Carotene Cancer prevention study[J]. Cancer Epidemiol Biomarkers Prev,2017,26(6):945-952.
[24] KANG J H, JANG J E, MISHRA S K, et al. Ergosterol peroxide from Chaga mushroom(Inonotus obliquus)exhibits anti-cancer activity by down-regulation of the β-catenin pathway in colorectal cancer[J]. J Ethnopharmacol,2015,173:303-312.
[25] WANG K, KARIN M. Tumor-elicited inflammation and colorectal cancer[J]. Adv Cancer Res,2015,128:173-196.
[26] RAY A L, BERGGREN K L, RESTREPO C S, et al. Inhibition of MK2 suppresses IL-1β,IL-6,and TNF-α-dependent colorectal cancer growth[J]. Int J Cancer,2018,142(8):1702-1711.
[27] JIANG J, XIE Z, GUO J, et al. Association of PPARG rs 1801282 C>G polymorphism with risk of colorectal cancer:from a case-control study to a meta-analysis[J]. Oncotarget,2017,8(59):100558-100569.
[28] BENELLI R, VENE R, FERRARI N. Prostaglandin-endoperoxide synthase 2(cyclooxygenase-2),a complex target for colorectal cancer prevention and therapy[J]. Transl Res,2018,196:42-61.
[29] LI Z W, SUN B, GONG T, et al. GNAI1 and GNAI3 reduce Colitis-Associated Tumorigenesis in Mice by Blocking IL6 Signaling and Down-regulating Expression of GNAI2[J]. Gastroenterology,2019,156(8):2297-2312.
[30] PFALZER A C, LEUNG K, CROTT J W, et al. Incremental Elevations in TNFalpha and IL6 in the Human Colon and Procancerous Changes in the Mucosal Transcriptome Accompany Adiposity[J]. Cancer Epidemiol Biomarkers Prev,2018,27(12):1416-1423.
[31] WAN G, XIE M, ZHANG X, et al. Chang-wei-qing,a Chinese herbal formula,ameliorates colitis-associated tumour development via inhibiting NF-kappaB and STAT3 signalling pathway[J]. Pharm Biol,2019,57(1):231-237.
[32] GENG R, TAN X, WU J, et al. RNF183 promotes proliferation and metastasis of colorectal cancer cells via activation of NF-kappaB-IL-8 axis[J]. Cell Death Dis,2017,8(8):e2994.
[33] BUHRMANN C, YAZDI M, POPPER B, et al. Evidence that TNF-beta induces proliferation in colorectal cancer cells and resveratrol can down-modulate it[J]. Exp Biol Med(Maywood),2019,244(1):1-12.
[34] SLATTERY M L, MULLANY L E, Sakoda L, et al. The NF-kappaB signalling pathway in colorectal cancer:associations between dysregulated gene and miRNA expression[J]. J Cancer Res Clin Oncol,2018,144(2):269-283.
[35] PATEL M, HORGAN P G, MCMILLAN D C, et al. NF-kappaB pathways in the development and progression of colorectal cancer[J]. Transl Res,2018,197:43-56.
[36] DANIELSEN S A, EIDE P W, NESBAKKEN A, et al. Portrait of the PI3K/AKT pathway in colorectal cancer[J]. Biochim Biophys Acta,2015,1855(1):104-121.

备注/Memo

备注/Memo:
收稿日期: 2019 - 03- 08
* 基金项目: 2018年度全国中医药研究生教育研究课题(23)
第一作者简介: 周小英(1990-),女,在读硕士研究生,研究方向:中西医结合防治结直肠疾病。
△通信作者: 苗大兴,E-mail:740916216@qq.com
更新日期/Last Update: 2020-05-06