我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|本期目录/Table of Contents|

基于网络药理学和分子对接研究“柴胡-丹参”药对治疗慢性乙型肝炎的作用机制(PDF)

《云南中医学院学报》[ISSN:1000-2723/CN:53-1048/R]

期数:
2021年01期
页码:
76-87
栏目:
方药研究
出版日期:
2021-06-28

文章信息/Info

Title:
Study on the Mechanism of “Bupleurum- Salvia Miltiorrhiza” on Chronic Hepatitis B Based on Network Pharmacology and Molecular Docking
文章编号:
1000-2723(2021)01-0076-12
作者:
任思思1范 妤1 2△郭东艳2李 倩1陈 阳1翟秉涛2史晓燕1段丽芳1
(1. 陕西中医药大学基础医学院,陕西 咸阳 712046;2. 陕西省中药基础与新药研究重点实验室,陕西 咸阳 712046)
Author(s):
REN Sisi1 FAN Yu12 GUO Dongyan2 LI Qian1 CHEN Yang1 ZHAI Bingtao2 SHI Xiaoyan1 DUAN Lifang1
(1. The Basic Medical College of Shaanxi University of Chinese Medicine, Xianyang 712046, China; 2. Shaanxi Province Key Laboratory of Basic and New Herbal Medicament Research, Xianyang 712046, China)
关键词:
网络药理学分子对接柴胡丹参慢性乙型肝炎
Keywords:
network pharmacology molecular docking Bupleurum Salvia miltiorrhiza chronic hepatitis B
分类号:
R285
DOI:
10.19288/j.cnki.issn.1000-2723.2021.01.010
文献标识码:
A
摘要:
目的运用网络药理学和分子对接的方法分析“柴胡-丹参”药对治疗慢性乙型肝炎的潜在作用机制。方法 借助 TCMSP、Drugbank、Uniprot等数据库及参考文献获取中药柴胡-丹参的有效成分及靶标。通过Genecards、Drugbank、OMIM平台检索有关与慢性乙型肝炎疾病相关的靶标,并借助Venny数据库、String数据库和Cytoscape平台构建有效成分-靶点相互作用网络图,运用R语言对其核心靶点进行功能和通路富集分析,预测“柴胡-丹参”药对治疗慢性乙型肝炎的潜在关键成分与作用靶标,进一步使用Autodock和Pymol软件对其有效成分与慢性乙型肝炎HBcAg、HBeAg、HBsAg进行分子对接,分析其治疗的作用机制及可行性。结果 获得“柴胡-丹参”药对治疗慢性乙型肝炎发挥作用的有效活性成分73个,疾病潜在靶点985个。对其“柴胡-丹参”药对治疗慢性乙型肝炎的共有化合物-靶点网络图可知,有槲皮素、木樨草素、山柰酚、丹参酮等67个有效活性成分,PTGS2、ADRB2、HSP90AA1、ESR1等88个共有靶点。通过GO和KEGG分析可知,参与了细胞因子受体结合等生物过程及乙型肝炎等信号通路发挥其治疗作用。运用核心成分与靶蛋白对接可知,槲皮素、木樨草素与HBcAg、HBeAg、HBsAg具有较好的亲和力。结论 通过网络药理学和分子对接,充分体现了“柴胡-丹参”药对治疗慢性乙型肝炎“多成分-多靶点-多通路”复杂的作用特点,为进一步的实验和临床提供了理论依据和新的治疗方向。
Abstract:
Objective The potential mechanism of“Bupleurum-Salvia miltiorrhiza” in the treatment of chronic hepatitis B was analyzed by means of network pharmacology and molecular docking. Methods The effective components and targets of“Bupleurum-Salvia miltiorrhiza” were obtained by using references and databases like TCMSP, Drugbank, Uniprot and so on. Genecards, Drugbank and OMim were used to search for targets related to chronic hepatitis B, and Venny database, String database and Cytoscape platform to build effective components - target interaction network. The function and pathway enrichment analysis of the core targets were carried out by R language to predict the potential key components and action targets of“Bupleurum-Salvia miltiorrhiza” in the treatment of chronic hepatitis B. Autodock and Pymol software were further used to conduct molecular docking between its active components and HBcAg, HBeAg and HBsAg in order to analyze the mechanism and feasibility of its treatment. Results We obtained 73 active components of“Bupleurum - Salvia miltiorrhiza” in the treatment of chronic hepatitis B. There were 985 potential targets of chronic hepatitis B. According to the network of common compounds and targets of“Bupleurum-Salvia miltiorrhiza” in the treatment of chronic hepatitis B, there were 67 effective active ingredients such as quercetin, luteolin, kaempferol and tanshinone, and 88 common targets such as PTGS2, ADRB2, HSP90A1 and ESR1. Through GO and KEGG analysis, it can be seen that it is involved in biological processes such as cytokine receptor binding, as well as signaling pathways such as hepatitis B, to play an important role in treatment. The docking of core components with target proteins showed that quercetin and luteolin had a good affinity with HBcAg, HBeAg and HBsAg. Conclusion Through network pharmacology and molecular docking, the complex action characteristics of“Bupleurum-Salvia miltiorrhiza” in the treatment of chronic hepatitis B were fully reflected, which provides theoretical basis and new therapeutic direction for further experiment and clinical practice.

参考文献/References

[1] 陆海英,徐小元. 《慢性乙型肝炎防治指南》(2019年版)解读[J]. 临床内科杂志,2020,37(8):540-542.
[2] WANG F S,FAN J G,ZHANG Z,et al. The global burden of liver disease:the major impact of China[J]. Hepatology,2014,60(6):2099-2108.
[3] LIU J,LIANG W,JING W,et al. Countdown to 2030:eliminating hepatitis B disease,China[J]. Bull World Health Organ,2019,97(3):230-238.
[4] REVILL P,LOCARNINI S. Antiviral strategies to eliminate hepatitis B virus covalently closed circular DNA(cccDNA)[J]. Curr Opin Pharmacol,2016,30:144-150.
[5] 成春锋,袁鑫,焦爽,等. 李延治疗慢性乙型肝炎经验[J]. 中华中医药杂志,2019,34(1):176-178.
[6] 焦云涛,李小科,杨先照,等. 基于关联规则和复杂系统熵聚类的HBeAg阳性慢性乙型肝炎用药规律分析[J]. 临床肝胆病杂志,2016,32(11):2075-2079.
[7] 刘海涛,施家希,罗丹,等. 中医药辨证治疗慢性乙型肝炎用药规律文献研究[J]. 中医杂志,2016,57(16):1421-1425.
[8] 辛国,赵昕彤,黄晓巍. 柴胡化学成分及药理作用研究进展[J]. 吉林中医药,2018,38(10):1196-1198.
[9] 孙宁远,朱雪林,陈君. 丹参化学成分抗纤维化药理作用及机制研究进展[J]. 中国实验方剂学杂志,2020,26(22):201-208.
[10] LI S,ZHANG B. Traditional Chinese medicine network pharmacology:theory,methodology and application[J]. Chin J Nat Med,2013,11(2):110-120.
[11] KONDO Y,NINOMIYA M,KAKAZU E,et al. Hepatitis B surface antigen could contribute to the immunopathogenesis of hepatitis B virus infection[J]. ISRN Gastroenterology,2013,2013:935295.
[12] 吴芳,李克明,隆毅,等. 丹参治疗糖尿病肾病的网络药理学研究[J]. 广州中医药大学学报,2019,36(3):402-409.
[13] LI M,LI F,LI N,et al. Association of polymorphism rs1053005 in STAT3 with chronic hepatitis B virus infection in Han Chinese population[J]. BMC Med Genet,2018,19(1):52.
[14] WARIS G,SIDDIQUI A. Interaction between STAT-3 and HNF-3 leads to the activation of liver-specific hepatitis B virus enhancer 1 function[J]. J Virol,2002,76(6):2721-2729.
[15] KIM H Y,JHUN J Y,CHO M L,et al. Interleukin-6 upregulates Th17 response via mTOR/STAT3 pathway in acute-on-chronic hepatitis B liver failure[J]. J Gastroenterol,2014,49(8):1264-1273.
[16] CHEN M J,WU D W,SHEN C J,et al. Hepatitis B virus X protein promotes tumor invasion and poor prognosis in hepatocellular carcinoma via phosphorylation of paxillin at Serine 178 by activation of the c-Jun NH2-terminal kinase[J]. Am J Cancer Res,2020,10(1):275-283.
[17] WANG F,LI L,CHEN Z,et al. MicroRNA-214 acts as a potential oncogene in breast cancer by targeting the PTEN-PI3K/Akt signaling pathway[J]. Int J Mol Med,2016,37(5):1421-1428.
[18] 胡鹏,任红. 2017年欧洲肝病年会乙型肝炎病毒感染临床实践指南要点[J]. 中华肝脏病杂志,2017,25(6):415-418.
[19] 孙元培,郭晓霞. 基于中医传承辅助平台挖掘姜良铎教授治疗慢性乙型肝炎方药规律[J]. 中国实验方剂学杂志,2017,23(6):210-217.
[20] LIN X M,LI S,ZHOU C,et al. Cisplatin induces chemoresistance through the PTGS2-mediated anti-apoptosis in gastric cancer[J]. Int J Biochem Cell Biol,2019, 116:105610.
[21] KWON D H,ZHANG L,QUIGLEY D A,et al. Down-regulation of ADRB2 expression is associated with small cell neuroendocrine prostate cancer and adverse clinical outcomes in castration-resistant prostate cancer[J]. Urol Oncol,2020,38(12):931.
[22] WANG L,ZHAO H,ZHANG L,et al. HSP90AA1,ADRB2,TBL1XR1 and HSPB1 are chronic obstructive pulmonary disease-related genes that facilitate squamous cell lung cancer progression[J]. Oncol Lett,2020,19(3):2115-2122.
[23] RADULOVICN,STEVANOVICM,NESICM,et al. Constituents of Bupleurum praealtum and Bupleurum veronense with Potential Immunomodulatory Activity[J]. J Nat Prod,2020,83(10):2902-2914.
[24] LIU A,TANAKA N,SUN L,et al. Saikosaponin d protects against acetaminophen-induced hepatotoxicity by inhibiting NF-κB and STAT3 signaling[J]. Chem Biol Interact,2014,223:80-86.
[25] 辛国,赵昕彤,黄晓巍. 柴胡化学成分及药理作用研究进展[J]. 吉林中医药,2018,38(10):1196-1198.
[26] SHI J,LAI J,LIN Y,et al. Tanshinone IIA down-regulated p-Smad3 signaling to inhibit TGF-β1-mediated fibroblast proliferation via lncRNA-HSRL/SNX9[J]. Int J Biochem Cell Biol,2020,129:105863.
[27] 陈忠辉. 丹参酮ⅡA磺酸钠联合恩替卡韦治疗慢性乙型肝炎的疗效探讨[J]. 中外医疗,2020,39(5):100-102.
[28] LIU G L,YANG H J,LIU B,et al. Effects of MicroRNA-19b on the proliferation,apoptosis,and migration of Wilms’ Tumor cells via the PTEN/PI3K/AKT signaling pathway[J]. J Cell Biochem,2017,118(10):3424-3434.
[29] GIERSCH K,ALLWEISS L,VOLZ T,et al. Serum HBV pgRNA as a clinical marker for cccDNA activity[J]. J Hepatol,2017,66(2):460-462.
[30] TSENG T C,HUANG L R. Immunopathogenesis of Hepatitis B Virus[J]. J Infect Dis,2017,216(suppl 8):S765-S770.
[31] MAK L Y,WONG D K,CHEUNG K S,et al. Review article:hepatitis B core-related antigen(HBcrAg):an emerging marker for chronic hepatitis B virus infection[J]. Aliment Pharmacol Ther,2018,47(1):43-54.
[32] 刘娜,东冰,周路路,等. ALT小于2倍正常上限的HBeAg阳性慢性HBV感染者肝纤维化的影响因素分析[J]. 检验医学与临床,2020,17(21):3110-3112.
[33] 周莉,邱源旺,甘建和,等. 白细胞介素-21与HBeAg阳性慢性乙型肝炎患者恩替卡韦停药后复发的相关性[J]. 中华传染病杂志,2017,35(12):725-729.
[34] LI X,ZHOU D,CHI X,et al. Entecavir combining Chinese herbal medicine for HBeAg-positive chronic hepatitis B patients:a randomized,controlled trial[J]. Hepatol Int,2020,14(6):985-996.
[35] AL-MAHTAB M,BAZINET M,VAILLANT A. Safety and efficacy of nucleic acid polymers in monotherapy and combined with immunotherapy in treatment-naive bangladeshi patients with HBeAg+ chronic hepatitis B infection[J]. PLoS One,2016,11(6):e0156667.
[36] HEIM K,BINDER B,SAGAR,et al. TOX defines the degree of CD8+ T cell dysfunction in distinct phases of chronic HBV infection[J]. Gut,2020,2020:322404.
[37] PARVEZ M K,TABISH REHMAN M,ALAM P,et al. Plant-derived antiviral drugs as novel hepatitis B virus inhibitors:Cell culture and molecular docking study[J]. Saudi Pharm J,2019,27(3):389-400.

备注/Memo

备注/Memo:
收稿日期: 2021 - 01- 18基金项目: 陕西省科技厅项目(2021JM-472);陕西省中药基础与新药研究重点实验室开放基金(2017KF03);陕西中医药大学创新团队项目(2019-YL14);陕西省教育厅重点科研计划项目(重点实验室项目)(21JS007) 第一作者简介: 任思思(1996-),女,在读硕士研究生,研究方向:中西医结合基础研究。△通信作者: 范妤,E-mail:806919125@qq.com
更新日期/Last Update: 1900-01-01